Artificial Intelligence Applications in Computational Biology

4D Genome, Precision Medicine, and Systems Pharmacology

Ivet Bahar

Laufer Center for Physical & Quantitative Biology Biochemistry and Cell Biology Department, Renaissance School of Medicine, SBU

May 6, 2024 – AI workshop, SBU and BNL

Two major groups of computations:

Systems Pharmacology

- Input: data on protein-small molecule interactions
- Output: drug protein –pathway mapping, including repurposable drugs and side effects in the cell
- Provides a systems level view

Genome-Scale Modeling

- Proteome/genome-scale, or 'omics' data
- Broad range of applications, from precision medicine to disease networks
- High predictive power, but no insights into mechanisms/causality unless complemented by physics-based models

REFERENCE

Available online at www.sciencedirect.com

Current Opinion in Structural Biology

Mutually beneficial confluence of structure-based modeling of protein dynamics and machine learning methods

Anupam Banerjee¹, Satyaki Saha¹, Nathan C. Tvedt^{1,2}, Lee-Wei Yang^{3,4} and Ivet Bahar¹

Banerjee, Saha et al. (2023) Curr Opin Struct Biol 78:102517

Banerjee, Saha et al. (2023) Curr Opin Struct Biol 78:102517

Plan

Quantitative Systems Pharmacology

Druggability simulations, pharmacophore modeling for drug discovery

ML/AI-based assessment of alternative drugs, systems-level effects

Genome/Proteome-Scale Models and Predictions

- ML-based prediction of the pathogenicity of point mutations and deletions
- 4D modeling the structure and dynamics of the genome

Quantitative Systems Pharmacology (QSP)

Two major groups of QSP computations:

Modeling & Simulations

Bakan A, Kapralov AA, Bayir H, Hu F, Kagan VE, Bahar I (2015) <u>Inhibition of Peroxidase Activity of</u> <u>Cytochrome c: *De Novo* Compound Discovery and Validation *Mol Pharmacol* **88**: 421-7</u>

Data-driven Analyses

Druggability simulations

DAT trimer embedded into neuronal lipids containing POPE (green), POPC (lime), cholesterol (yellow), POPI (cyan), and PIP2 (purple).

Cheng MH, Ponzoni L, Sorkina T, Lee JY, Zhang S, Sorkin A, Bahar I. Neuropharmacology (2019)

Trimerization of Dopamine Transporter Triggered by AIM-100 Binding: Molecular Mechanisms and Effect of Mutations

dded into neuronal POPE (green), plesterol (yellow), PIP2 (purple).

Cheng MH, Ponzoni L, Sorkina T, Lee JY, Zhang S, Sorkin A, Bahar I. Neuropharmacology (2019)

ProDy pipeline for identifying druggable sites and building pharmacophore models

Discovery of a new modulator of PTHR signaling

Structure-guided identification of druggable allosteric sites in receptors (such as this Class B GPCR) can aid the design of novel therapeutic candidates for metabolic diseases,

Nat Chem Biol. 2020 October; 16(10): 1096-1104. doi:10.1038/s41589-020-0567-0.

nature

chemical biology

and Jean-Pierre Vilardaga 01

Allosteric interactions in the parathyroid hormone GPCR– arrestin complex formation

Lisa J. Clark^{1,2,†}, James Krieger^{3,†}, Alex D. White^{1,4}, Vasyl Bondarenko⁵, Saifei Lei¹, Fei Fang¹, Ji Young Lee³, Pemra Doruker³, Thore Böttke⁶, Frederic Jean-Alphonse¹, Pei Tang^{1,3,5}, Thomas J. Gardella⁷, Kunhong Xiao¹, leva Sutkeviciute¹, Irene Coin⁶, lvet Bahar^{3,*}, Jean-Pierre Vilardaga^{1,*}

JiYoung Lee, PhD

PTHR signaling and prolonged cAMP production

JP Vilardaga, LJ Clark, AD White, I Sutkeviciute, JY Lee, I Bahar (2023) Endocr Rev 44, 474–491, <u>https://doi.org/10.1210/endrev/bnac032</u>

Quantitative Systems Pharmacology

Promiscuity of drugs and pleiotropy of proteins

Andrew L HopkinsNetwork pharmacology:the next paradigm in drug discoveryNatureChemical Biology4, 682–690, 2008

Yıldırım, Goh, Cusick, Barabási & Vidal Drug—target network <u>Nature Biotechnology</u> 25, 1119–1126, 2007)

Drug Repurposing Probabilistic Matrix Factorization

Latent vectors characteristic of each drug (*u*i) or protein (*v*i), deduced from PMF analyses of the complete dataset of drug-target interactions

<i>v₁</i>
<i>v</i> ₂
<i>v₃</i>
v ₄

Cobanoglu et al. (2013) Predicting drug-target interactions using probabilistic matrix factorization J Chem Inf Model **53**: 3399-409

Source: **DrugBank** 1,576 targets, 1,509 drugs, 5,630 interactions

Identification of repurposable drugs against SARS-CoV-2

using a QSP approach

Chen F, Shi Q, Pei F, Vogt A, Porritt RA, Garcia G, Gomez AC, Cheng MH, Schurdak ME, Chan SY, Arumugaswami V, Stern A, Taylor L, Arditi M, Bahar I. <u>A Systems-level study reveals host-targeted repurposable</u> <u>drugs against SARS-CoV-2 infection</u> *Molecular Systems Biol.* 17:e10239 (2021).

Identification of drugs targeting four different modules

Genome/Proteome-Scale Analyses

Proteome-scale machine learning

Luca Ponzoni

Predicting functional impact of mutations

Luca Ponzoni & Ivet Bahar PNA5 (2018) Ponzoni, Penaherrera, Oltvai & Bahar *Bioinformatics* (2020)

20

Novel Approach Combining physical sciences & ML

SEQuence-based features:

- conservation
- ∆ conservation (wt vs mutated allele)

STRuctural feature:

Solvent Accessible Surface
 Area

DYNamical features:

- GNM Mean-Square
 Fluctuations
- PRS analysis (allosteric effectors/sensors)

MechStiff

Random Forest classification

- trained on 20,000 annotated human variants
- 10-fold cross-validation
 procedure

Aims:

- 1. evaluate the accuracy attainable by combining SEQ-STR-DYN features
- 2. quantify contribution of dynamical features

Ponzoni L, Bahar I. (2018) <u>Structural dynamics is a determinant of the functional significance of</u> <u>missense variants.</u> *Proc Natl Acad Sci USA* **115**: 4164-4169

Significant improvement in predictions

Upon including DYN features

SEQuence-based features:

- conservation
- • ∆ conservation (wt vs mutated allele)

STRuctural feature:

Solvent Accessible Surface
 Area

DYNamical features:

- GNM Mean-Square
 Fluctuations
- PRS analysis (allosteric effectors/sensors)
- MechStiff

Random Forest classification

- trained on 20,000 annotated human variants
- 10-fold cross-validation
- procedure

Aims:

- 1. evaluate the accuracy attainable by combining SEQ-STR-DYN features
- 2. quantify contribution of dynamical features

Ponzoni L, Bahar I. (2018) <u>Structural dynamics is a determinant of the functional significance of</u> <u>missense variants.</u> *Proc Natl Acad Sci USA* **115**: 4164-4169

Effect of Amino Acid Deletions (AA-Del) on the Fold

Can the protein retain its original fold despite a deletion?

Challenges:

- 1. No existing dataset listing effect of stability on foldability
- 2. No computational framework to predict foldability

Anupam Banerjee, PhD

Banerjee & Bahar (2023) <u>Structural Dynamics Predominantly Determine the</u> <u>Adaptability of Proteins to Amino Acid Deletions</u>. *IJMS* **24**, 8450

Recall rate of 84.3% is obtained for detecting TPs. Dynamics-only features yield 78.0%

 \mathbf{m}

26

Intrinsic Dynamics is a major determinant of the fold adaptability to a deletion (of 2-23 residues).

Banerjee & Bahar (2023) IJMS 24, 8450

Tom Misteli, Cell 183,28-45, 2020

Chromatin accessibility and 3D spatial fluctuations

Sauerwald, Zhang, Kingsford & Bahar Nucleic Acids Res 2017

Analysis of chromosomal dynamics for 16 different cell types

Locus number (50kb)

Zhang et al. (2020) Nucleic Acids Res 48, 1131-1145

30 Each cell type has a signature gene-mobility profile Does high mobility correlate with upregulation, or high expression? Yes!

31 Concluding remarks

- First steps toward 4D Genome
- Good agreement with DNase-seq, ATAC-seq and ChIA-PET data
- Differences in gene mobilities correlate with differences in gene expression patterns:
 dynamics is a determinant of cell expression signature

Softest mode of motion predicted by ANM analysis of single-cell Hi-C data (for mouse embryonic stem cells)*

*Stevens, ..., Laue (2017) 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature, **544**, 59-64

REMARKS

Merger of physics-based with ML tools will help bridge microscopic & macroscopic behaviors

32

Mathematical accuracy (exact solution) of physics-based approaches complements the statistical accuracy of AI tools.

Banerjee et al. (2023) Curr Opin Struct Biol 78:102517

Two major groups of computations:

Systems Pharmacology

Genome-Scale Modeling

Both groups use

- theory and methods of computer science, machine learning, and mathematics,
 AND
- models and methods of physical sciences and engineering.

Lab members

. Anupam Banerjee

. Satyaki Saha

- . Carlos Ventura
- . Hoang Nguyen
- Mary H Cheng

· Jiyoung Lee

Antony Bogetti

·Xiaowei Bogetti

- . Lee-Wei Yang
- Hongchun Li
- Frank H Zhang
- She Zhang
- Yan Zhang
- Luca Ponzoni

• K Mikulska-Ruminski

- James Krieger
- Murat C Cobanoglu
- Fen Pei
- Burak Kaynak
- Ahmet Bakan
- Anindita Dutta
- Lidio Meireles
- Ying Liu
- Indira Shrivastava

Collaborators

- Susan Amara (NIMH)
- Moshe Arditi (Cedars-Sinai/UCLA)
- Ali Rana & Canan Atilgan (Sabanci U)
- Tom Bartol (Salk)
- Hulya Bayir (Pitt)
- Jeff Brodsky (Pitt)
- Pemra Doruker (Bogazici/Pitt) upport from NIGMS, NIDDK, NHGRI & HFSP
- James Faeder (Pitt)
- Aurelio Galli (Alabama U)
- Jenny Garcia-Olivares (NIMH)
- Joel Greenberger (UPMC) Ingo Greger (MRC, UK)
- Ingo Greger (MRC, UK)
- Angela Gronenborn (Pitt)
- Turkan Haliloglu (Bogazici U)
- Amnon Horovitz (Weizmann)
- Valerian Kagan (Pitt)
- Carl Kingsford (Carnegie Mellon)
- David Perlmutter (Wash U)
- Gideon Schreiber (Weizmann)
- Terry Sejnowski (Salk)
- Gary Silverman (Wash U)
- Sasha Sorkin (Pitt)
- Lans Taylor (Pitt, UPDDI)
- Delany Torres-Salazar (NIMH)
- Andy VanDeMark (Pitt)
- Yong Wan (Emory)
- Sally Wenzel (Pitt, GSPH)
- David Whitcomb (UPMC)
- Eric Xing (CMU)

Thank you!

2